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ABSTRACT

In a seminal paper, Parker (1966) showed the vertical stratification of the interstellar medium (ISM)

is unstable if magnetic fields and cosmic rays provide too large a fraction of pressure support. Cosmic

ray acceleration is linked to star formation, so Parker’s Instability and its nonlinear outcomes are a

type of star formation feedback. Numerical simulations have shown the instability can significantly

restructure the ISM, thinning the thermal gas layer and thickening the magnetic field and cosmic

ray layer. However, the timescale on which this occurs is rather long (∼ 0.4 Gyr). Furthermore,

the conditions for instability depend on the model adopted for cosmic ray transport. In this work,

we connect the instability and feedback problems by examining the effect of a single, spatially and

temporally localized cosmic ray injection on the ISM over (∼ 1 kpc3) scales. We perform cosmic

ray magnetohydrodynamic simulations using the Athena++ code, varying the background properties,

dominant cosmic ray transport mechanism, and injection characteristics between our simulation runs.

We find robust effects of buoyancy for all transport models, with disruption of the ISM on timescales

as short as 100 Myr when the background equilibrium is dominated by cosmic ray pressure.
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1. MOTIVATION

In 1966, Eugene Parker showed the interstellar

medium’s (ISM’s) stratification was unstable when non-

thermal pressure support by magnetic field and cosmic

rays was introduced (Parker 1966). The free energy

source for the instability is the gravitational potential

energy of gas held above its natural scale height. Parker

argued that undular perturbations of the field lines,

which on average are tangent to the Galactic plane,

would allow gas to slide into the magnetic troughs, while

the crests were free to buoyantly rise. The end result

would be the production of cosmic ray inflated mag-

netic lobes rising perpendicular to the galactic disk and

pockets of dense gas in the Galactic plane.

Corresponding author: Roark Habegger
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In order for the instability to occur, the equation of

state (EoS) of the medium must be soft enough to al-

low compression into pockets. Parker assumed the cos-

mic ray pressure would remain constant along field lines

and that the gas would follow an isothermal EoS. Under

these conditions, any pressure support from magnetic

fields and/or cosmic rays renders the system unstable.

The Milky Way’s thermal energy density, magnetic

energy density, and cosmic ray energy density are all

on the order of ∼ 10−12 erg cm−3; e.g. (Ferrière 2001;

Draine 2011). In general, the far infrared - radio cor-

relation (Bell 2003) suggests that star formation, cos-

mic ray acceleration, and magnetic field generation are

linked. This correlation means the Parker instability

connects star formation to the disruption of the ISM

and the production of outflows. So, the Parker insta-

bility is a form of star formation feedback and could

play a key role in galactic evolution. It could mediate
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the formation of dense clouds, but also heat and disrupt

them (Bustard & Zweibel 2021). It could launch mass

from the disk as a wind or fountain (Everett et al. 2008;

Uhlig et al. 2012; Hanasz et al. 2013; Girichidis et al.

2016; Ruszkowski et al. 2017; Wiener et al. 2017; Far-

ber et al. 2018; Zhang 2018; Hopkins et al. 2018; Chan

et al. 2019; Hopkins et al. 2021). Perhaps less directly

related to feedback, it could contribute to cosmic ray

escape from the disk, and could influence the galactic

dynamo by growing the component of the field perpen-

dicular to the disk (Hanasz & Lesch 2000; Hanasz et al.

2004, 2009).

While the non-thermal pressure in cosmic rays and

aforementioned buoyancy mechanism provide a way for

cosmic rays to affect galactic evolution and the struc-

ture of the ISM, there is evidence against the Parker

instability being a dominant effect in galaxies. The

original Parker instability model has been revised to

include more physical processes and more realistic se-

tups (Mouschovias 1974; Zweibel & Kulsrud 1975; As-

seo et al. 1978; Giz & Shu 1993; Heintz & Zweibel

2018), and analyzed in the nonlinear regime with nu-

merical simulations (Heintz et al. 2020; Tharakkal et al.

2022). Overall, these results lead to more stringent con-

ditions for instability and show the instability requires a

longer time to vertically restructure the ISM; typically

over 400 Myr (Heintz et al. 2020; Tharakkal et al. 2022).

This long timescale means the effects of the instability

could be overshadowed by other processes with shorter

timescales.

One key difference between the different analyses lies

in the treatment of cosmic ray transport and the choice

of cosmic ray EoS. A stiffer adiabatic index (γg (gas)

or γc (cosmic rays)) makes the system more stable; a

softer EoS is destabilizing. Parker’s original assump-

tion, γc = 0, makes the system very unstable (Heintz &

Zweibel 2018). Of course, not all cosmic ray effects can

be expressed through an EoS, diffusion being an obvious

exception. We defer a detailed discussion of transport

to Section 2.3, but the main choices are between the

self confinement model (also known as the streaming

model), confinement by extrinsic turbulence, which is

diffusive, and the limit of zero diffusion (also known as

advection).

As a result of the EoS dependence on transport, the

chosen transport model determines whether the cosmic

rays stabilize or destabilize the system (Zweibel 2017;

Heintz & Zweibel 2018) In particular, cosmic rays are

stabilizing under the advection model. This result is

puzzling, given the simple physical basis for cosmic ray

buoyancy, and partly motivates the work described in

this paper.

The fundamental question connecting research on the

Parker instability to research on star formation is, “Un-

der what conditions do cosmic rays change the ISM of

a galaxy?” To probe this question, we examine how a

single localized injection of cosmic rays (e.g., particles

accelerated in the shock waves created by supernova ex-

plosions) disrupts the ISM. We take this route instead

of a traditional Parker instability seeded by small veloc-

ity perturbations because it directly connects our setup

to star formation feedback. Localized cosmic ray in-

jection has been studied previously as a driver for the

galactic dynamo (Hanasz & Lesch 2000; Hanasz et al.

2004, 2009). It produces structure similar to the Parker

instability, with an extended magnetic lobe and gas con-

densed in parts of the disk. Focusing on the sources

of cosmic rays instead of the background led us to ask

the following: “What is the timescale on which a sin-

gle cosmic ray injection changes the vertical structure of

the surrounding ISM?” We break this question into four

sub-questions concerning a single injection’s impact on

the ISM:

• (Q1) How does the background medium’s stability

change the injection’s impact?

• (Q2) How does the choice of cosmic ray transport

model change the injection’s impact?

• (Q3) How do the injection’s strength and vertical

location change its impact?

• (Q4) How does cosmic ray injection differ from

heat injection by a thermal explosion?

By answering these questions for a range of models

within an extended parameter space, our simulations

provide a detailed look at how the injection of cosmic

rays in a single event changes the ISM on ∼ 1 kpc length

scales and over times shorter than the ∼ 400 Myr re-

quired for restructuring by the Parker instability (Heintz

et al. 2020; Tharakkal et al. 2022).

Overall, we show that for a stiff cosmic ray EoS, and

transport by advection or diffusion, cosmic ray injec-

tion can loft magnetic fields and cosmic rays to heights

exceeding a kiloparsec on timescales ≈ 100 Myr. Cos-

mic ray transport dominated by streaming ( i.e. a

strong magnetic field) results in buoyant rising, pro-

ducing structure similar to the Parker instability on

timescales & 170 Myr. While injecting cosmic rays in a

burst replicates some features of the Parker Instability,

the medium responds on a timescale that is several times

faster, and the dependence on transport is entirely dif-

ferent. Taken together our simulations show that cosmic

ray injection can cause significant dynamical change on
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a ∼ 100 Myr timescale, with the change being largest if

diffusion is the dominant cosmic ray transport process,

the magnetic field is weak, and the background cosmic

ray pressure is large.

The paper is split into six sections including this mo-

tivation section. In Section 2, we provide background

on the Parker instability and cosmic ray transport. In

Section 3 we cover our numerical methods, our initial

conditions for magnetohydrodynamic simulations, and

our parameter choices for each simulation run. In Sec-

tion 4 we present the overall results of our simulations.

In Section 5 we compare the runs and discuss the im-

plications of our simulations, while answering our four

questions concerning various astrophysical parameters.

In Section 6 we summarize the paper and provide key

takeaways from the work. Readers primarily interested

in our results should focus on Figures 5 & 9, Table 1,

and Sections 5 & 6.

In the appendices, we provide further detail on our

simulations. In Appendix A, we compare a Parker in-

stability simulation run with our code to one obtained

previously with a significantly different code and show

they give consistent results. In Appendix B, we discuss

the boundary conditions and dimensionality of our sim-

ulations. In Appendix C, we discuss the dependence of

our simulation results on various numerical parameters

and our parameter choices for the primary simulations.

2. BACKGROUND

2.1. Magnetohydrostatic Equilibrium

The Parker instability disrupts a magnetohydrostatic

equilibrium in the galactic disk Parker (1966). With a

few exceptions (Asseo et al. 1978; Boulares & Cox 1990),

the equilibrium quantities are assumed to be functions

of z alone and the magnetic field lines are horizontal and

straight. The condition for equilibrium is then

d

dz

(
Pg + Pc +

B2

8π

)
= ρg. (1)

Parker solved the stability problem for a particularly

simple class of equilibria: fixed, constant gravity g, con-

stant mean squared random gas velocity Pg/ρ, and uni-

form ratios of nonthermal to thermal gas pressures pa-

rameterized by two constants α and β‡

PB =
B2

8π
= αPg Pc = βPg. (2)

While other features of the equilibrium setup were modi-

fied in later work, the (α, β) parameterization has gener-

‡ Note Parker’s β is not the usual plasma beta. Instead, the pa-
rameter α is the inverse of the plasma beta βpl = PgP

−1
B = α−1.

ally endured, and we use it to describe the pre-injection

state in our simulations. However, we use the equilib-

rium setup from Giz & Shu (1993) as our initial ISM

background. In this model the gravitational profile is

smooth

g(z) = −g∗ẑ tanh

(
z

H∗

)
. (3)

instead of the discontinuous −g∗Sign(z) profile Parker

(1966) used. The smooth function in Equation 3 poses

fewer numerical difficulties than a discontinuous profile

in numerical simulations which extend above and below

the galactic plane (Heintz et al. 2020). In Equation 3,

the asymptotic vertical gravitational acceleration g∗ >

0 and the gravitational scale height H∗ depend on the

structure of the galactic disk’s stellar population.

Assuming a plane-parallel hydrostatic equilibrium,

Equation 1 becomes

dPtot

dz
≡ (1 + α+ β)

dPg
dz

= ρ(z)g(z) (4)

where Ptot is the total pressure; the sum of gas, mag-

netic, and cosmic ray pressure. We solve for the equi-

librium under the influence of the gravitational pro-

file Equation 3, using an isothermal equation of state

Pg = c2sρ with constant sound speed cs, and midplane

values Pg(0) = Pg,0, ρ(0) = ρ0. The solution to Equa-

tion 4 is

Pg(z)

Pg,0
=
ρ(z)

ρ0
= f(z) = sechη

[
z

ηH

]
. (5)

The solution depends on how the scale height of the gas

H relates to the gravitational scale height. The scale

height of the gas is

H =
c2s
g∗

(1 + α+ β). (6)

The ratio of the two scale heights η = H∗/H is a con-

stant. Taking a limit of Equation 5 as η → 0 (or equiva-

lently, H∗ → 0) recovers the solutions in Parker (1966).

The geometry and coordinate system for this equilib-

rium are illustrated in Figure 1. The pressures, includ-

ing magnetic pressure, are homogeneous in surfaces par-

allel to the xy plane, which is shown as a green plane

in Figure 1. For our simulations, we orient the initial

magnetic field in the x̂ direction. The magnetic field is

shown as a blue arrow in Figure 1. Using Equations 2

& 5 the magnetic field is

B(z) = x̂
√

8παPg,0f(z). (7)

Similarly, the cosmic ray pressure is

Pc(z) = βPg,0f(z). (8)
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In Figure 1, the coordinates (x̂, ŷ, ẑ) approximately

map to a galactic disk’s cylindrical coordinates. The

x̂ direction is parallel or anti-parallel to the azimuthal

direction φ̂ (depending on whether the magnetic field

is oriented clockwise or counter-clockwise around the

galactic center), the ŷ direction is parallel or anti-

parallel to the radial direction r̂ (again, depending on

magnetic field orientation), and the ẑ direction is paral-

lel to the cylindrical ẑ direction.

2.2. Parker Instability

We can assess the stability of Parker’s equilibrium to

ideal (energy conserving) small amplitude perturbations

with the generalized Schwarzschild convection criterion

(Newcomb 1961; Boulares & Cox 1990; Zweibel 2017).

This criterion for instability in a vertically stratified at-

mosphere is

−d ln ρ

dz
<

ρg∗
γgPg

. (9)

This criterion is applicable above the midplane with z >

0. Assuming we are well above the midplane (z > H∗)

where the gravitational acceleration is constant (−g∗),
then the logarithmic derivative is the scale height H

of the gas. This assumption gives the same criterion

x̂

ŷ

ẑ

B

g

Figure 1: Caption

2

Figure 1. This schematic shows our initial setup for hydro-
static equilibrium. We have a gravitational field (red arrows)
in the ẑ direction, which flips sign at the midplane z = 0
(see Equation 3). The magnetic field (blue arrow) is ori-
ented along the x̂ direction and creates a magnetic pressure
supporting vertical hydrostatic equilibrium (Equations 4,7).
We then inject cosmic rays, shown by an orange circle (see
Section 3.2 for injection profile), above the midplane, which
is shown as a green rectangle.

as Parker’s original gravity profile. In this limit, the

criterion for instability to occur is

α+ β > γg − 1. (10)

If we include the compressibility of cosmic rays, then we

need to replace γgPg with γgPg + γcPc in Equation 9.

Using this change and evaluating the criterion again, we

get

α+ β(1− γc) > γg − 1. (11)

The above criterion illustrates a confusing result noted

in Zweibel (2017), and again in Heintz & Zweibel (2018).

Generically, one would guess increasing non-thermal

pressures makes the system more unstable. However,

Equation 11 shows there is a way for increasing cosmic

ray pressure (β) to make the system more stable. Since

the cosmic ray fluid is relativistic gas, it has γc = 4
3 .

In that case, the left hand side would be smaller with

increasing β. The physical explanation for this effect is

that compressing the cosmic rays requires work.

Self confinement by streaming leads to the polytropic

relation Pc ∝ ρ2/3 along magnetic flux tubes. Using this

value in Equation 11 would predict a stability thresh-

old intermediate between “classic” Parker (γc = 0) and

γc = 4/3. Instead, it is shown through a modal analysis

in Heintz & Zweibel (2018) that self confinement leads

to a even larger domain of instability and faster growth

rates than “classic” Parker with γc = 0. In fact, the

analysis used to derive Equation 9 does not apply to

the streaming model, due to the relative drift between

cosmic rays and thermal gas, and the heating that ac-

companies streaming. Similarly, Equation 9 does not

apply to diffusion dominated cosmic ray transport.

We show a schematic for advection dominated trans-

port in Figure 2. This figure is not quantitatively predic-

tive of our simulation setup, which has a smooth g∗ given

by Equation 3, a non-ideal perturbation, and in some

cases, transport dominated by streaming or diffusion.

The schematic shows the (α, β) space of equilibrium so-

lutions with an adiabatic gas exponent γg = 5/3. Using

Equations 10 and 11, we show different regions of sta-

bility determined by the cosmic ray adiabatic index γc.

There is a strictly Parker unstable region (unshaded), a

strictly Parker stable region (black), and a gray region

which is stable if the cosmic rays take work to compress

(assuming γc = 4/3). For smaller values of γg, the fan of

stability boundaries shifts downward so the boundaries

intersect on the vertical axis where α = γg − 1.

To reiterate: We choose simulation parameters

throughout the (α, β) parameter space to probe differ-

ent background medium conditions. This short review

of stability of the background medium illustrates how
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= Pc/Pg
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if c = 0
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3
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U

Figure 2. This schematic shows the parameter space of
magnetic pressure α = PB/Pg and cosmic ray pressure
β = Pc/Pg. For advective transport, we show the regions
of parameter space where the initial hydrostatic equilibrium
(see Section 2.2) is unstable to the Parker instability. The
gray region is stable if cosmic rays have an adiabatic index
γc = 4/3. The black region is stable if the cosmic rays are
an infinitely compressible fluid with index γc = 0. The S, U,
B, and C points are where the simulations, listed in Table 1,
are located in this parameter space.

our different background medium models would be clas-

sified in a Parker instability analysis, and provides a

short review of the Parker instability and its dependence

on cosmic ray transport.

2.3. Cosmic Ray Transport

The stability of the system described in Section 2.2

and illustrated in Figure 2 depends on the effective com-

pressibility of the cosmic rays, and therefore on cosmic

ray transport. Cosmic rays are transported through-

out the interstellar medium by three mechanisms: ad-

vection, diffusion, and streaming. The effects of these

different transport mechanisms have already been ex-

amined in global galactic models (Girichidis et al. 2016;

Wiener et al. 2017).

All three mechanisms are based on the assumption

that the cosmic rays exchange momentum and energy by

scattering from fluctuations in the magnetic field with a

wavelength of order the cosmic ray gyroradius (so-called

gyroresonant scattering). Advection, which applies in

the limit of infinitely short mean free path and scattering

by fluctuations with no preferred propagation direction

along the background magnetic field lines, is the most

straightforward: if the thermal gas has a bulk flow in

a particular direction, the cosmic rays should flow with

the gas. If advection is dominant, then the cosmic rays

behave like a relativistic fluid, with negligible inertia,

following the flow of the thermal (non-relativistic) gas.

Diffusion of cosmic rays applies when the fluctuations

again have no preferred propagation direction, but the

mean free path to scattering is large enough to allow

the cosmic rays to leak through the thermal gas. If

the measured residence time and vertical scale height

of cosmic rays in the Milky Way are explained by dif-

fusive propagation, the implied diffusion coefficient is

κc ∼ 3 · 1028 cm2 s−1.

Streaming, or self confinement, applies when the mag-

netic fluctuations are generated by the cosmic rays

themselves as a result of directional anisotropy in the

frame of the fluctuations. It can be shown that in the

short mean free path regime, the streaming direction is

down the cosmic ray pressure gradient. This instability

appears in the kinetic theory for cosmic ray transport,

and it drives the cosmic rays into a bulk flow at the

Alfven speed vA ≡ B/
√

4πρ (Kulsrud & Pearce 1969;

Wentzel 1969; Skilling 1975). The streaming instabil-

ity also heats the gas: the cosmic rays transfer energy

to hydromagnetic waves through gyro-resonance, which

then dissipate energy into the thermal gas (Kulsrud &

Pearce 1969; Wentzel 1969; Skilling 1975). This heating

appears as a source term in the equation for the thermal

energy density and the cosmic ray energy density. The

heating rate from the streaming instability is vA ·∇Pc
(see Zweibel (2017) for discussion and references).

Each of these transport methods drives a different

characteristic response in the ISM when cosmic rays

are injected. Advection and streaming both drive steep

fronts of gas and cosmic ray energy. Whereas advec-

tion will result in the cosmic ray fluid moving at the

flow speed, bringing the gas with it, streaming allows

the cosmic rays to move ahead of the gas if the Alfven

speed is faster than the sound speed. In the streaming

case, a front of cosmic rays will move through the gas

while heating the gas according to the Alfvenic heating

term vA ·∇Pc. Diffusion, in contrast to both stream-

ing and advection, drives a smoother flow of cosmic rays

while also exerting a force on the gas along the cosmic

ray pressure gradient.

We provide the following useful timescales for each

transport mechanism to move cosmic rays through a dis-

tance L of the ISM:

τadv = L ·
(
γgP0

ρ0

)−1/2

≈ 65LkpcT
−1/2
4 Myr, (12)
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τstr = L ·
(

B0√
4πρ0

)−1

≈ 35Lkpcρ
1/2
−24BµMyr, (13)

τdiff =
L2

κc
≈ 30L2

kpcκ
−1
28 Myr, (14)

where Lkpc, T4, Bµ, ρ−24, and κ28 are the length scale,

gas temperature, gas density (assuming full ionization),

and cosmic ray diffusivity in units of 1 kpc, 104 K, 1µG,

10−24 g cm−3, and 1028 cm2 g−1. In our simulations,

the gas flows are generally subsonic, so the advection

timescale is an imperfect measure: the correct timescale

will be larger. For advection dominated simulations, we

set the simulation parameters such that the streaming

and diffusion timescales are much larger than an order

unity multiple of the advection timescale in Equation 12.

However, when the advection and streaming timescales

are similar according to Equations 12 & 13, the stream-

ing transport dominates the dynamics in our simulations

because of this overestimated flow speed. We only use

these timescales to determine the dominant transport

mechanism, defaulting to streaming when the streaming

and advection timescales are similar (i.e. Simulation U -

see Table 1).

3. SETUP

3.1. Basic Equations and Numerical Methods

Our simulations are based on fluid equations for the

thermal gas - cosmic ray - magnetic field system Bre-

itschwerdt et al. (1991); Zweibel (2017). These equa-

tions accommodate cosmic ray transport by both diffu-

sion and streaming; for the latter, it is assumed that the

scattering waves propagate down the cosmic ray pres-

sure gradient. Enforcing this feature creates numeri-
cal difficulties near extrema in cosmic ray pressure. Al-

though this can be handled through a smoothing length

(Sharma et al. 2010), we adopt the two moment formu-

lation of streaming transport developed by Jiang & Oh

(2018) (see also Thomas et al. (2021)) as implemented in

the Athena++ code (Stone et al. 2020), which modifies

the equations presented in Breitschwerdt et al. (1991)

through a time dependent evolution equation for the

cosmic ray flux.

The implementation of Athena++ from Jiang & Oh

(2018) solves the following equations:

∂ρ

∂t
+∇ · (ρv) = 0, (15)

∂B

∂t
−∇× (v×B) = 0, (16)

∂
(
ρv
)

∂t
+∇ ·

(
ρvv +

(
Pg +

1

2
B2

)
1−BB

)
= ρg + σ̂c · (Fc − γcvEc) , (17)

∂E

∂t
+∇ ·

(
v

(
E + Pg +

1

2
B2

)
−B (B · v)

)
= ρg · v − (γc − 1) (v + vs) · ∇Ec, (18)

∂Ec
∂t

+∇ · Fc = (γc − 1) (v + vs) · ∇Ec, (19)

1

V 2
m

∂Fc
∂t

+ (γc − 1)∇Ec = −σ̂c · (Fc − γcvEc) . (20)

The dynamical variables are gas density ρ, bulk flow ve-

locity v, gas pressure Pg, magnetic field B, the combined

internal and kinetic energy density E = P/(γg − 1) +

ρv2/2, the cosmic ray energy density Ec = Pc/(γc − 1),

and the cosmic ray energy flux Fc. We include the ef-

fects of a gravitational acceleration g, given by Equation

3. We use γc = 4/3 and set the modified speed of light

parameter to Vm = 0.3c. For more discussion on con-

vergence according to this parameter, see Appendx C.

3.2. Initial Conditions

The initial profiles of density, gas pressure, magnetic

field, and cosmic ray pressure are described in Sec-

tion 2. We use midplane density and pressure val-

ues of ρ0 = 10−24 g cm−3 and Pg,0 = 10−12 g cm−3.

We use an asymptotic gravitational acceleration g∗ =

4 · 10−9 cm s−2 and a gravitational scale height H∗ =

100 pc (Heintz et al. 2020). This height is smaller

to what is used in Parker instability simulations (see

App. A and Rodrigues et al. (2016); Heintz et al. (2020)).

Additionally, this height decreases our initial profile’s

height ratio η when compared to Milky Way and Parker

instability simulations (Rodrigues et al. 2016; Heintz

et al. 2020). This adjustment means our injection can

occur in a region where the gravity has nearly reached

the asymptotic value g∗. As the flux tube of interest

rises, it will move in a constant gravitational accelera-

tion.

The simulation grid is 200×50×300 cells (ordered with

respect to (x̂, ŷ, ẑ)) . The cell size is 10×20×10 pc3, giv-

ing a total simulation volume 2× 1× 3 kpc3. The third

dimension (ẑ) is off-center of the midplane (z = 0), ex-

tending from z = −1 kpc to z = +2 kpc. The cosmic

rays are injected above the midplane (z0 > 0), so this

off-centering focuses the computational resources on the

injection and the resulting flows. We do not use any

adaptive or static mesh refinement. We adopt outflow
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boundary conditions in the x̂ and ŷ directions and vac-

uum (diode) boundary conditions in the ẑ direction to

minimize the effect of domain size. See Appendix B for

additional discussion.

The equilibrium is setup to within single-precision

floating point numerical error, which is less than the

density and pressure floors of our simulations. There

are some waves created by the interaction of the equi-

librium with the vertical boundaries where there is an

abrupt transition to vacuum. These waves are small and

have no long term effect on the dynamics of our simula-

tion.

The cosmic ray energy density injection profile is a 3D

Gaussian function:

εc(x, y, z) =
ESN

(2πr2
SN)

3/2
· exp

[
−1

2r2
SN

|r− r0|2
]
. (21)

The parameters of the injection are its position r0, ra-

dius rSN, and total energy injected ESN. We add this

perturbation onto the background cosmic ray pressure

profile in Equation 5. Integrating the profile, Equation

21, over volume gives ESN as the total energy injected.

The injection occurs at different heights above the mid-

plane depending on the other parameters under consid-

eration (see Table 1).

In each simulation, we use the same injection radius

rSN = 50 pc. This radius is large for a single supernova

shock, but reasonable for our default energy injection

from ∼ 10 supernovae (see Section 3.3). This larger ra-

dius allows our simulation (with 10−20 pc resolution) to

reliably sample the injection profile. To avoid sampling

errors (aliasing) which will change the total injected en-

ergy, we center the injection in the xy plane on a cell

center. The grid has cell faces along x = 0 and y = 0

planes, so we choose to center the injection at x0 = 5 pc

and y0 = 10 pc. As a result of this placement, the peak

of the profile occurs in the center of a computational cell.

The height z0 and total energy ESN are varied across our

simulations (see 1)

For reference, if the pressure of 1051 erg injected cos-

mic rays were uniformly distributed throughout the

volume of the injection tube (radius 50 pc, length 2 kpc)

is ∼ 0.73×10−12 dynes cm−2, corresponding roughly to

a doubling of background cosmic ray pressure. In this

strictly 1D situation, with no horizontal pressure gra-

dient, the tube would expand radially. This expansion

would reduce its density and cause it to float upward

buoyantly, with a characteristic rise time ∼ 100 Myr (for

our adopted gravitational field and scale height).

3.3. Explanation of Parameters

We present the results of ten simulations of cosmic ray

injection. The initial parameters for each simulation

are shown in Table 1. We choose the parameters for

the simulations to help us answer the four questions,

presented at the end of Section 1 and labeled Q1, Q2,

Q3, and Q4.

We first considered what values of α and β are rea-

sonable in the solar neighborhood. Measurements sug-

gest the pressures (thermal, cosmic ray, and magnetic)

are nearly equal (Ferrière 2001). Therefore, we choose

a base run with α = β = 1. Simulations with these

values are named with a prefix U. In Figure 2, this is

on a stability boundary when cosmic ray streaming and

diffusion are not included. However, each simulation in

Table 1 includes transport by diffusion (even when it is

not dominant), and most include streaming. Therefore,

the stability implied by Figure 2 does not strictly ap-

ply, suggesting this equal pressure background medium

is Parker unstable. To compare this background with

a strictly Parker stable background, we run a simula-

tion with α = β = 0.1. We use a prefix ‘S’ to refer to

this combination of values. Our first two simulations, la-

belled U and S, allow us to address Q1: how the stability

of the background medium changes the effect of cosmic

ray injection. For both these simulations, we use a gas

adiabatic constant consistent with a monatomic ideal

gas γg = 5/3, a negligible cosmic ray diffusion constant

κc = 3 ·1024 cm2 s−1, and an injection energy equivalent

to the estimated cosmic ray injection energy of ∼ 10 su-

pernovae (Caprioli & Spitkovsky 2014), such as might

be expected from an association of coeval massive stars.

Our third simulation, Uiso, has the same parameters

as U except for the adiabatic gas constant γg = 1.1,

which brings the system closer to the isothermal case

originally considered by Parker (1966) and is expected

to be more unstable. This simulation also addresses Q1.
To answer Q2, how cosmic ray transport affects the

behavior of the system post injection, we need a way to

differentiate the dominant cosmic ray transport mech-

anism. We do this by considering each transport

timescale, given by Equations 12, 13, 14. It turns out

that the flows in our simulations are subsonic and our

advection timescale assumes propagation at the sound

speed. So, when streaming and advection timescales are

close, we assume streaming dominates. Simulations U

and S, are instances of streaming and advection domi-

nance, respectively.

To better isolate the impact of each transport mech-

anism, we probe two other points in the (α, β) plane of

Figure 2. We run a simulation with a large magnetic

field α = 1.9 and low amount of background cosmic

rays β = 0.1, so it is in the top left corner of Figure 2.
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Parameters Timescales

ρ0 = 10−24 erg cm−3 H∗ = 100 pc Vm = 0.3c τadv = 76 Myr
(
γg
5/3

)−1/2

P0 = 10−12 erg cm−3 g∗ = 4 · 10−9 cm s−2 κc,⊥ = 3 · 1024 cm2

s
τstr = 69 Myr (α)−1/2

cs = 106 cm s−1 rSN = 50 pc γc = 4/3 τdiff = 10 Myr

(
κc

1028 cm2

s

)−1

T = 1.21 · 104 K (m̄/mp) B0 = 5.06µG
√
α

Run Name α β γg H (pc) η z0 (pc) Weight (M�) ESN (erg) CR κc,‖
(
cm2 s−1

)
Question

S 0.1 0.1 5/3 97 1.03 45 1.28 · 104 1051 Adv. 3 · 1024 Q1

U 1.0 1.0 5/3 243 0.41 105 2.24 · 104 1051 Str. 3 · 1024 Q1,Q3,Q4

Uiso 1.0 1.0 1.1 243 0.41 105 2.24 · 104 1051 Str. 3 · 1024 Q1

Cadv 0.1 1.9 5/3 243 0.41 105 2.24 · 104 1051 Adv. 3 · 1024 Q1,Q2

Bstr 1.9 0.1 5/3 243 0.41 105 2.24 · 104 1051 Str. 3 · 1024 Q1,Q2

Cdiff 0.1 1.9 5/3 243 0.41 105 2.24 · 104 1051 Diff. 3 · 1028 Q1,Q2

Bdiff 1.9 0.1 5/3 243 0.41 105 2.24 · 104 1051 Diff. 3 · 1028 Q2

Uheavy 1.0 1.0 5/3 243 0.41 25 3.27 · 104 1051 Str. 3 · 1024 Q3

Ublast 1.0 1.0 5/3 243 0.41 105 2.24 · 104 1052 Str. 3 · 1024 Q3

Utherm 1.0 1.0 5/3 243 0.41 105 2.24 · 104 1051 ∗ Str. 3 · 1024 Q4

Table 1. The first table shows the parameters held fixed across our simulations, as well as derived timescales. The second table
shows the parameters we vary for each simulation run we perform. The first column shows each simulation run name. The next
columns show background medium parameters: magnetic pressure to gas pressure ratio α, cosmic ray pressure to gas pressure
ratio β, thermal adiabatic index γg, gas scale height H, and profile exponent η (see Equation 5). The second set of columns
shows injection parameters: initial height of the injection z0, the weight in the column above the injection, and the volume
integrated injection energy ESN (see Equation 21). The third set of columns shows dominant cosmic ray transport mechanism
and the parallel cosmic ray diffusion coefficient κc,‖. The final column shows which questions the simulation applies to (see
Sections 1 & 3.3).

This simulation is labelled Bstr, and streaming domi-

nates the transport of the injected cosmic rays because

the Alfven speed is much higher than the flow speed

and the diffusion rate. We also run a simulation Cadv

with α = 0.1 and β = 1.9, placing it in the bottom

right hand corner of Figure 2. With this simulation,

we probe a medium which is Parker stable due to the

stiff equation of state with large non-thermal pressure

where streaming and diffusion are subdominant trans-

port mechanisms relative to advection.. The simulation

Cdiff has the same values of α and β, but uses a dif-

fusion constant κ = 3 · 1028 cm2 s−1 which is close to

estimated Milky Way values.

While these three simulations allow us to examine how

streaming, advection, and diffusion affect the response

of the medium to cosmic ray injection, they do not com-

pletely eliminate the influence of the background state;

while the nonthermal pressures are equal in all three, the

role of magnetic tension in Bstr is larger than in Cadv

or Cdiff due to the stronger background magneic field.

Therefore, to determine whether the streaming cosmic

rays or the strong magnetic field was more critical, we

ran Bdiff. That simulation had the same initial pa-

rameters as Bstr, but with a higher diffusion coefficient

and streaming terms removed. Although diffusion and

advection do not have an ‘off-switch’ in the implementa-

tion from Jiang & Oh (2018), streaming transport does,

and we make use of it when running Bdiff.

Bstr and Cadv also address Q1 because they are at

different points in the (α, β) plane. They have differ-

ent background cosmic ray and magnetic pressures from
simulations U or S, allowing us to learn how that aspect

of the background medium changes the impact of cosmic

ray injection.

Question 3 probes the effects of injection properties,

so we adjust parameters related to the injection. Us-

ing simulation U as a control case, we compare both

of the following simulations to it, and only change sin-

gle parameters. First, we use simulation Uheavy with

the cosmic ray injection at a lower height in the disk,

meaning it has more weight above it. Second, we use

a simulation, Ublast, with the strength of 10% of 100

supernovae to understand how different amounts of en-

ergy injection change the results. Other than the weight

above the injection and the injection energy, we keep the

variables the same as simulation U, which we compare

each of these cases against.
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For Q4, which compares the effects of cosmic rays to

direct energization of thermal gas, we run a simulation,

Utherm, with the same initial parameters as the Parker

unstable simulation U, except the injection is in thermal

pressure instead of in cosmic ray pressure.

4. RESULTS

We focus on a flux tube enclosing the initial injection.

Since we use the ideal MHD equations and because there

is effectively no perpendicular cosmic ray diffusion, the

gas and cosmic rays stay on the flux tube. All the sim-

ulations share some common features. The cosmic rays

in the injection sphere are overpressured by more than

a factor of 20. This creates a low density cavity within a

few Myr and launches a pressure driven flow away from

the injection sphere. The cavity itself is buoyant because

of reduced density and the outflow reduces the density

along a progressively longer segment of the tube. The

result is a rising magnetized arch which becomes ever

more buoyant as gas is drained from the tube by a grav-

ity driven downflow. The only forces that counter the

rise are magnetic tension due to field line curvature, the

inertia of the overlying gas, and adiabatic cooling of both

the thermal and cosmic ray gases as they expand. The

configuration has strong up-down asymmetry, because

the effects which slow the flux tube’s rise increase near

the midplane.

For each simulation, we examine physical quantities

near the center of the tube (x = ±250 pc). This restric-

tion allows us to focus on the dynamics in the center

of the flux tube, where the initial cosmic ray injection

occurred. Additionally, it minimizes the impact of the

boundary conditions on our results for early times in the

simulation (See Appendix B for a discussion of boundary

conditions). In Figure 3 we show the maximum height

along the flux tube as a solid black line, the average

gas pressure as a solid purple line, the average magnetic

pressure as a dashed purple line, the average cosmic ray

pressure as a dash-dotted purple line, and the average

mass as a dotted green line. The average flux tube height

in the ±250 pc region is approximately the same as the

maximum height. These quantities help us understand

how the injection evolves through time and how it causes

the flux tube to change.

The most striking part of the results in Figure 3

are the plots for simulations Cadv, Cdiff, Ublast, and

Utherm. In these four simulations, the flux tubes rise

over 400 pc in less than 100 Myr. The rise is accompa-

nied by decreases in mass and pressure in the central

region of the flux tube.

The other simulations do not exhibit such a quick,

drastic rise in flux tube height, nor decreases in pres-

sure and mass in the central region of the flux tube.

Simulations S and Uheavy end up being stable to the

perturbation (meaning the flux tube rise is limited). S

even finds a new equilibrium after an initial rise. Simu-

lations U, Uiso, and Bstr all eventually begin to buoy-

antly rise, but only rising to 200 pc, at a time of 150 Myr

after the cosmic ray injection. These simulations each

have streaming as the dominant cosmic ray transport -

instead of creating a violent disruption in the center of

the magnetic flux tube, streaming puts energy into heat-

ing the entire length of the magnetic flux tube. However,

the stronger injection in Ublast still launches material

rapidly when compared to U, even though streaming is

dominant.

To more clearly illustrate the dynamics in our simula-

tions, we show 2D cuts from simulation Cdiff in Figure

4. The first column shows gas density, the second col-

umn shows vertical momentum, and the third column

shows horizontal momentum. The green lines are mag-

netic field lines along the flux tube analyzed in Figure

3. The first row is a snapshot at 4 Myr, the second

row at 60 Myr, and the third row at 120 Myr. Once the

cosmic rays diffuse, they create an over-pressured flux

tube which begins to move upward (middle column, top

row). After the flux tube bends, gas begins to fall down

the curved lines (right column, middle row). After some

time, this process builds until a large up-flow in the cen-

ter and down-flow along the magnetic field lines. The

final density plot (left column, bottom row) also shows

how the flux tube is able to lift some mass out of the

disk.

We show the cosmic ray pressure distributions for sim-

ulations Cadv, Bstr, and Cdiff in Figure 5. The first

column shows simulation Cadv, the second column shows

Bstr, and the third column shows Cdiff. The first and

second rows show the same time dumps for each sim-

ulation (top row is 3 Myr, middle row is 50 Myr). The

final row shows the later development of the injection

for each simulation. The Bstr simulation does not grow

as much vertically because magnetic tension holds the

flux tube down for most of the simulation. Only once

the field lines are able to bend does the flux tube begin

to rise, because gas is able to leave the flux tube at a

faster rate. This effect is also shown in the second row

of plots in Figure 3. Regardless of cosmic ray transport

by streaming or diffusion, the strong magnetic field sim-

ulations (Bstr and Bdiff) exhibit slowed or negligible

rise of the flux tube. Streaming appears to be the most

effective in the large magnetic field case because the gas

gets heated in addition to being overpressured.
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Figure 3. After injecting cosmic rays on a magnetic flux tube, we track that tube’s movement. For each simulation shown,
the solid black line is maximum height of the flux tube at a given time. The green dotted line is the average mass in the region
x < |250 pc|, as a fraction of the initial average mass. The purple solid, dashed, and dash-dotted lines are the gas, magnetic,
and cosmic ray pressure, respectively, averaged in the same region. The second y axis on the right side applies to the lines of
mass and pressures, with each quantity Q ∈ {〈M〉, 〈Pg〉, 〈PB〉, 〈Pc〉} normalized by either P0 = 10−12 erg cm−3 or the initial
value (for mass 〈M〉).
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Figure 4. Plots of gas density (first column), vertical momentum (second column), and horizontal (x̂) momentum (third
column) at a y = 0 cut of simulation Cdiff. In this simulation, cosmic ray diffusion is the dominant transport mechanism.
Early in the simulation, the cosmic rays quickly diffuse along the magnetic field lines. This diffusion leaves behind a flux tube
with increased average cosmic ray pressure. This region begins to rise buoyantly, shown in the middle row. The final row
shows gas falling back toward the disk around the injection, while the location continues to launch gas upward at x = 0. The
normalization constants are P0 = 10−12 erg cm−3 and ρ0cs = 10−18 g cm−2 s−1. The green lines are magnetic field lines; the
middle line is integrated from the x = −1 kpc bound at the height of the initial injection. The other lines are initialized at ±rSN

and ±2rSN of the injection height.
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4.1. A Caveat on Simulation Utherm

In simulation Utherm, instead of injecting cosmic rays,

we injected energy as thermal heating. This thermal

energy injection had the same magnitude, 1051 erg, as

the cosmic ray injection in simulation U.

While this simulation highlights the effectiveness of

thermal energy injection, our simulations lack radiative

cooling. This injected gas should cool by emitting radi-

ation while it expands. We estimate a radiative cooling

time scale to determine the effect of radiative cooling on

the injection, using Equation 34.4 from Draine (2011):

tcool = 1.1 · 105 yr

(
T

106 K

)1.7 ( nH

cm3

)−1

(22)

For simulation Utherm, the peak temperature in the cen-

ter of the injection is 105.04 K, compared to the back-

ground T0 ∼ 104 K Therefore, the radiative cooling time

for this injection is tcool ≈ 2.2 kyr. This time scale is

so short that this thermal injection should dissipate be-

fore causing a disruption in the ISM like we see in sim-

ulation Utherm. While temperatures are even higher

in actual supernova remnants (∼ 107 K for the Sedov-

Taylor phase (Draine 2011)), our injection represents a

long term average impact of those remnants. Radiative

cooling will limit the impact of the thermal injection, as

compared to a cosmic ray injection. A similar effect is

seen in models of supernova heated gas launched from

galactic disks, which tend to be fountains rather than

winds (Shapiro & Field 1976; Rosen & Bregman 1995;

Bustard et al. 2018, 2020).

5. DISCUSSION

To the questions posed in Section 1, we now have the

following answers:

• (Q1) A purely Parker stable medium limits the

effect of cosmic ray injection. An isothermal

medium is more prone to disruption by a cosmic

ray injection. See Figure 6.

• (Q2) Cosmic ray advection and diffusion drive

changes in the ISM on ∼ 100 Myr time scales,

through explosive launching and buoyancy, respec-

tively. Large magnetic field strength (which also

implies streaming dominated transport) delays the

flux tube’s rise, but eventually causes buoyant ris-

ing. In the large magnetic field case, streaming is

more disruptive than diffusion. See Figure 7.

• (Q3) Stronger injections drive more explosive

flows, and injections closer to the midplane take

longer to launch the flux tube. See Figure 8.

• (Q4) Thermal injection drives buoyant rising of

the flux tube on a shorter time scale than cosmic

ray injection. Cosmic rays decrease the average

mass along the flux tube at a slower rate. Eventu-

ally, cosmic ray injections overtake thermal injec-

tions in height. However, simulation Utherm over-

estimates the efficacy of thermal injection because

it lacks cooling (see Section 4.1). See Figures 8, 9.

In the following subsections, we provide more com-

plete explanations for these answers.

5.1. Dependence on Background Medium (Q1)

We explored how changes in the background medium

affected the evolution of a cosmic ray injection. The

results are shown in Figure 6, which plots the average

mass and height along the flux tube of each simulation.

The Parker stable simulation (Simulation S) weath-

ers the cosmic ray injection, at least under transport by

advection and streaming, reaching a new stable equilib-

rium. When the background is Parker unstable accord-

ing to the original criterion (Equation 10), the injection

drives significant change. For the simulations U, Bstr,

and Cadv, we can use Equation 10 to show the combined

nonthermal pressures dominate the gas compressibility

(α + β = 2) > (γg − 1 = 2/3). The simulations with a

background biased towards magnetic pressure (Bstr) or

cosmic ray pressure (Cadv) launch the flux tube faster

than the equipartition case (U). Therefore, the initial

nonthermal pressures, given by (α, β), determine how

prone the system is to disruption by cosmic ray injec-

tion. This dependence also suggests an ISM with non-

uniform α, β would provide a complex environment for

cosmic ray injection, since different directions and posi-

tions could be more (or less) prone to being disrupted.

The case of an isothermal-like background with γg =

1.1 responds on a slightly shorter timescale than a back-

ground medium with γg = 5/3. This conclusion comes

from considering the average height achieved by the flux

tubes in simulations Uiso and U. In simulation Uiso,

buoyant rising begins after 80 Myr and stays significant

through the end of the simulation. For simulation U,

buoyant rising becomes dominant only after 140 Myr.

The average mass also decreases at a faster rate at late

times in simulation Uiso. Because γg is lower, it takes

less work to compress the gas and push it off the flux

tube once buoyancy kicks in. This change allows mass

to flow at a faster rate, driving the buoyancy force to

become larger.

5.2. Dependence on Cosmic Ray Transport (Q2)

We ran four simulations to determine the impact of

cosmic ray transport: simulation Bstr is streaming dom-
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Figure 5. Plots of cosmic ray pressure at a y = 0 cut of simulations Cadv (first column), Bstr (second column), and Cdiff

(third column). The normalization constant is P0 = 10−12 erg cm−3. The green lines are magnetic field lines. The dashed white
lines are contours of equal cosmic ray pressure. In the first two rows, cuts are all from the same time snapshots, but the final
row shows simulation Bstr at a later time snapshot than the other two simulations.
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Figure 6. Plot of maximum tube height (black) and average
mass (green) within x = ±250 pc of the injection location
for simulations related to Q1. Note the vertical axis has
been extended compared to Figure 3. Solid lines show sim-
ulation S, dashed lines show simulation U, dash-dotted lines
show simulation Uiso, dotted lines show simulation Bstr and
dots show simulation Cadv. The streaming dominated simu-
lations, U and Bstr, rise late. The advection dominated sim-
ulations, Cadv and S, have different results: the medium with
more cosmic ray pressure is significantly disrupted. Simula-
tion Uiso with γg = 1.1 allows more mass loss later in the
simulation, when compared with simulation U, which had
γg = 5/3.

inated, simulation Cadv is advection dominated, Cdiff

is diffusion dominated, and Bdiff is diffusion dominated

with a strong magnetic field. With these simulations, it

is clear that streaming does a poor job of launching ma-

terial when compared to diffusion and advection, which

both disrupt the ISM on a short time scale ∼ 100 Myr.

However, Bdiff shows this delay is not a result of the

cosmic ray transport by streaming. Instead, the large

magnetic field (necessary for streaming to be dominant)

resists any bending created by the injection. Streaming

is more effective than diffusion at disrupting the verti-

cal structure when magnetic tension is a dominant force.

Figure 7 shows the flux tube averaged mass and height

for these three simulations.

Simulation Bstr does not start to rise buoyantly un-

til a significant amount of mass has been lost from the

flux tube. In comparison, the buoyant rise in simulation

Cdiff happens quickly (see panels of Figure 3). The

advective simulation Cadv is mainly driven by an ex-
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Figure 7. Plot of maximum tube height (black) and average
mass (green) within x = ±250 pc of the injection location for
simulations related to Q2. Note the vertical axis has been
extended compared to Figure 3. Solid lines show simula-
tion Cdiff, dashed lines show simulation Cadv, dash-dotted
lines show simulation Bstr, and dotted lines show simulation
Bdiff. The streaming case has the flux tube rise buoyantly,
but only after a long time & 100 Myr. In contrast, the advec-
tion and diffusion dominated cases rise early . 100 Myr and
cause a significant amount of mass loss from the flux tube.
The streaming case is primarily inhibited by the magnetic
field strength, not the streaming transport, because in simu-
lation Bdiff the flux tube takes an even longer time to rise.

plosive launching, instead of buoyancy. However, it and

the diffusion case produce similar results in terms of flux

tube movement. The difference between those two sim-

ulations is more apparent in the beginning, when the

launching is different.

Of these simulations, the diffusion case is the most sur-

prising. Initially, one might think cosmic ray diffusion

may have a smaller effect on feedback processes than

streaming and advection, because there is less time for

cosmic rays to impact the ISM (See Equation 14) when

using the Milky Way value of the diffusion coefficient.

However, our simulation Cdiff shows a large cosmic ray

injection can generate enough force through the cosmic

ray pressure gradient to move mass out of the disk and

bend the magnetic field.

5.3. Dependence on Injection Characteristics (Q3 &

Q4)

We ran three simulations focused on the injection

characteristics. The first, Uheavy, placed the injection
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Figure 8. Plot of maximum tube height (black) and av-
erage mass (green) within x = ±250 pc of the injection for
simulations related to Q3 and Q4. Note the vertical axis has
been extended compared to Figure 3. Solid lines show sim-
ulation U, dashed lines show simulation Uheavy, dash-dotted
lines show simulation Ublast, and dotted lines show simu-
lation Utherm. Simulation Uheavy does eventually rise from
the disk after 200 Myr. Simulation Ublast drives an explo-
sive launching faster than the thermal injection in Utherm.

lower in the galactic disk. While the flux tube rose

later than in other simulations, this simulation gave sim-

ilar results when compared to U. Simulation Ublast ex-

amined how increasing the injection energy to 1052 erg

would change the dynamics. This large injection caused

significant change in the ISM, causing the flux tube to

rise rapidly. This simulation suggests that future simu-

lations, with multiple injections, could lead to rapid dis-

ruption. In Simulation Utherm, we replaced the cosmic

ray injection with a thermal injection of similar mag-

nitude. This injection contained no mass, but was an

over-pressure (T ∼ 105 K > T0 ∼ 104 K) region. This

thermal energy injection caused rapid mass flow off the

flux tube, driving a buoyant rise. However, the simula-

tion is physically unrealistic because we do not include

radiative cooling (see Section 4.1). The tube averaged

mass and height of these simulations are shown as part

of Figure 8.

5.4. Fast Disruption: Cosmic rays vs. Thermal

Injection

The simulations which produced the largest changes in

the shortest time for an injection energy 1051 erg were

Cadv, Cdiff, and Utherm. These injections had flux

tubes rise faster than a traditional Parker Instability,

and caused the flux tube to lose approximately half its

mass in . 100 Myr. In the top left panel of Figure 9

we show the evolution of peak tube height against mass.

The markers on each line denote 10 Myr steps, whereas

each line is made with points at a resolution of 1 Myr.

The final marker is at 130 Myr for each simulation. Even

though the cosmic ray injection simulations take a longer

time to start rising, they rise at a faster rate than the

thermal injection. They overtake the thermal injection

after approximately 90 Myr, and they have more mass at

that time. The density at y = 0 of the three simulations

at this final time, 130 Myr, is shown in the bottom panel

of Figure 9. Each simulation produces a different mag-

netic field structure. Considering simulation Utherm is

an overestimate of thermal injection’s impact (see cool-

ing time argument in Section 4.1), we can focus on the

difference between Cadv and Cdiff. The left and mid-

dle plots in the lower row of Figure 9 show that cosmic

ray transport changes the both the flow of gas around

the rising flux tube and the shape of the magnetic field

lines. The top right plot of Figure 9 shows the average

vertical momentum of the cells with z > 1.5 kpc for each

of the three simulations. Following the red dashed line

for simulation Cdiff, it is clear the diffusion dominated

simulation creates the largest mass flux from the disk.

While this gas may fall down given enough time and

vertical expansion distance, we are unable to continue

to follow that gas because it leaves out of the top of our

simulation (z = 2 kpc).

6. CONCLUSION

We ran ten simulations of cosmic ray injection into a

vertically stratified medium, using the Athena++ code.

These simulations illustrated the effect of cosmic ray

injection in a galactic disk, on intermediate scales (∼
1 kpc) larger than the ISM’s fine structure and smaller

than the entire galaxy. By exploring an extended param-

eter space, we produced the highest resolution picture

yet of localized cosmic ray injection on these mesoscales.

We also showed that cosmic ray transport dictates the

impact of cosmic rays on the ISM. Below, we provide

the key points and results of this work:

• Cosmic ray diffusion of a cosmic ray injection can

change the ISM’s vertical structure and a galaxy’s

magnetic field on timescales < 100 Myr.

• The large magnetic field strength necessary for

cosmic ray streaming dominance over diffusion
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Figure 9. Top Row, left plot: The evolution over time of each flux tube’s height and mass. Solid lines and filled markers
correspond to the tube’s peak height. Each simulation is shown until 130 Myr, with markers placed at 10 Myr increments. Black
circles show simulation Cadv, red stars show simulation Cdiff, and blue squares show simulation Utherm. While the thermal
injection in simulation Utherm initially moves material up faster, at late times the cosmic ray injections in simulations Cadv and
Cdiff overtake simulation Utherm. After 130 Myr, the diffusion transported cosmic ray injection has created the most vertically
extended flux tube. Top Row, Right Plot: For the same simulations, we show the average momentum in the vertical direction
in the region of z > 1.5 kpc. Cdiff creates the largest mass flux. The decrease around 140 Myr is when the flux tube leaves the
simulation through the upper boundary. Bottom Row: Cuts of simulations Cadv, Cdiff, and Utherm. These simulations were
the fastest at disrupting the vertical structure, with each image shown at a time of 130 Myr. The black lines are magnetic field
lines and the white dashed lines are density contours. These plots are cuts of our 3D simulations at y = 0. Simulation Cdiff

reaches the highest point, with significantly adjusted magnetic field structure.
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limits the rapid disruption of the flux tube because

of increased magnetic tension. Streaming is effec-

tive at disrupting the vertical structure, but takes

a longer time than in weak magnetic field cases.

• A flux tube disrupted by cosmic ray injection will

rise faster at later times than one disrupted by

thermal injection, producing a larger mass flow of

material out of the galactic disk.

Our simulations provided useful heuristic results by

considering cosmic ray injection in a stratified medium.

These simulations are clearly limited in their realism

because galactic disks are not uniformly stratified. The

ISM in galactic disks is multiphase and clumpy. Addi-

tionally, by neglecting the dynamics of the stellar grav-

itational potential, we lack forcing terms which could

change the effects of these energy injections. Future

work may need to focus on diffusion as the primary

cosmic ray transport mechanism, along with implemen-

tation of more realistic ISM conditions (multiple gas

phases, galactic rotation, etc.). The non-constant α,

β of the injection have a significant impact. This

non-uniformity should be extended to the background

medium, instead of using the constant α, β assumption

originally introduced by Parker (1966). Variable mag-

netic field strength is particularly important, as it could

amplify the importance of cosmic ray streaming in low

βpl regions.

In these simulations, we neglected radiative heating

and cooling, but those processes are an important con-

sideration in the ISM. The radiative cooling would be

particularly important for the gas heated by cosmic

ray streaming. Cooling will minimize, and possibly re-

move, the impact of the thermal injection in simulation

Utherm. Additionally, having only a single cosmic ray

injection by supernovae in our simulation volume over a

time of 100 Myr is unrealistic. In future work, we aim

to include multiple injections at different times and lo-

cations. Separating the injections in space opens up a

variety of other situations which make it difficult to iso-

late the buoyancy the injection creates, hence why we

only considered a single injection location in this work.

For large scale (cosmological or galactic) simulations,

there needs to be some consideration of cosmic ray injec-

tion. Even simulations which include cosmic rays gener-

ally do not resolve their injection into the ISM. Our work

shows a cosmic ray injection can drive an upward flow in

< 100 Myr after their injection, and most of that upward

movement actually happens in < 20 Myr. A resolution

of ∼ 100 pc would be enough to illustrate the impact

of an upward flow along the magnetic field (consider

bottom row of Figure 9). A sub-grid physics module

related to cosmic ray injection could initiate this flow

before letting it evolve independently. In the y direc-

tion, across the magnetic field and in the plane of the

disk, higher resolution would be necessary. The width

of the flux tube barely reaches 100 pc in that direction,

and the overall dynamics in that direction are minimal.

The main impact the y direction had in our simulations

is to allow mass above the flux tube to move out of the

path of the rising flux tube. The actual resolution of

that dimension is less significant (See Appendix B).

Our work also shows cosmic ray injection is an impor-

tant part of dynamics in a galaxy. Moving, heating, and

compressing gas all have an impact on where stars form

and on galactic structure. Since the eventual rise of the

flux tube happens in a short time (< 20 Myr), the dy-

namics created by cosmic ray injection are less likely to

be washed out by galactic rotation and other dynamical

processes. Our results also shed light on the respective

roles of cosmic ray compressibility and buoyancy alluded

to in Section 2.2. Finally, our results suggest that in-

cluding effects of localized cosmic ray injection in global

simulations could be a necessary step in accurately mod-

eling galactic outflows and evolution.
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APPENDIX

A. COMPARISON WITH PARKER INSTABILITY SIMULATIONS

To test our numerical methods and initial conditions, we ran a 2D simulation matching one in Heintz et al. (2020).

Those simulations used the FLASH code (Fryxell et al. 2000), along with the streaming transport method in Sharma

et al. (2010). Matching those parameters (originally based on Rodrigues et al. (2016)), we use ρ0 = 6.76 ·10−25 g cm−3,

Pg,0 = 8.19 · 10−13 erg cm−3, g∗ = 2 · 10−9 cm s−2, η = 2, H = 250 pc, α = 10/3, β = 1.25, and Vm = 0.01c.

We find that that our simulation method is consistent with that of Heintz et al. (2020), and our results are illustrated

in Figure 10. This figure shows horizontally (x̂) averaged profiles of the gas density, cosmic ray pressure, and magnetic

pressure at several time dumps, compared with the original profile for the quantities. Below the averaged profiles, we

show the gas density at each selected time dump. The magnetic and cosmic ray pressures decrease more slowly away

from the plane as the magnetic field becomes bent, while gas is compressed towards the midplane. Gravity pulls the gas

down along the magnetic flux tubes, which have turned perpendicular to the disk in several locations. Our simulation

matches expected behavior (see Figure 11 of Heintz et al. (2020), a similar plot) and evolves on a similar time scale

to Tharakkal et al. (2022). These profiles illustrate the transition from a linear growth regime to a nonlinear regime

examined in depth by Tharakkal et al. (2022). Additionally, these 2D simulations illustrate the cosmic ray method
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Figure 10. Top row: Vertical profiles of horizontally averaged gas density (solid red line), cosmic ray pressure (dash-dotted
blue line), and magnetic pressure (dotted green line). The initial vertical profile for the quantities is shown as well (dashed
black line). The initial profile is the same for each quantity because we normalize by the initial midplane value of each quantity,
and each physical variable is proportional to the other (see Section 2). Bottom row: Gas density at corresponding time dump
to the vertical profile above each image. The total mass in the simulation is conserved, with a loss of ∼ 0.1% through the diode
boundary conditions in the vertical (ẑ) directions.
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Figure 11. Plots matching Figure 3, but comparing simulations Bstr and Cdiff to identical simulations with periodic boundary
conditions, BstrPer and CdiffPer. For each simulation, the solid black line is maximum height of the flux tube at a given
time. The green dotted line is the average mass in the region x < |250 pc|, as a fraction of the initial average mass. The purple
solid, dashed, and dash-dotted lines are the gas, magnetic, and cosmic ray pressure, respectively, averaged in the same region.
The second y axis on the right side applies to the lines of mass and pressures, with each quantity Q ∈ {〈M〉, 〈Pg〉, 〈PB〉, 〈Pc〉}
normalized by either P0 = 10−12 erg cm−3 or the initial value (for mass 〈M〉).

implemented in Athena++ by Jiang & Oh (2018) is useful in studying the Parker instability, since it is in reasonable

agreement with other numerical simulations.

B. BOUNDARY CONDITIONS AND DIMENSIONALITY

In the direction of stratification (ẑ), we use vacuum (also known as diode) boundary conditions. These conditions

make it impossible for inflow to occur, since the boundary cells are set to the density and pressure floor of the numerical

simulation. We also avoid setting up a steep discontinuity at this boundary by extending the simulation several scale

heights in the vertical direction. Because of this extension, the cells near the boundary are already almost at the

density and pressure floors when the simulation starts. Then, any dynamical activity beyond that initial equilibrium

profile will propagate out of the simulation.

In directions in the plane of the disk (x̂ and ŷ) we use outflow boundary conditions. While these allow inflow from

boundary cells after the crest of a wave passes the boundary, there is very little error if the gas is quickly moving out

of the simulation at that boundary. Our current problem satisfies this assumption because the flow is either static,

or large (when the perturbation pushes gas down a magnetic flux tube and toward the boundary). Ideally, we would

again use vacuum boundary conditions to stop inflow. However, we cannot use a vacuum in this direction since this

would create a significant discontinuity near the midplane of the simulation, where there are gas densities and pressures

above the floor values. Therefore, outflow boundary conditions are the best ones for treating a single, spatially and

temporally isolated, injection.
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Figure 12. Height of flux tube in simulations with large injection energy Einj ≈ 1051 erg, similar to simulation Ublast. These
simulations were run to examine the impact of the third dimension, ŷ, on our results. The red solid line shows a simulation with
only 8 numerical cells in the ŷ direction, the blue dashed line used 16 numerical cells, the green X markers are from a simulation
with 32 numerical cells, and the purple plus markers are from a simulation with 64 numerical cells. The simulations with more
room in the ŷ direction are well converged at a length of ±0.5 kpc. We chose to use 50 numerical cells in our production runs,
with a resolution of ∆y = 20 pc.

With the goal of minimizing numerical errors, simulations often exploit periodic boundary conditions. In the current

work, we wanted to avoid tying down the flux tubes at the boundaries of the simulation in this study, because that

can have a stabilizing effect (Zweibel & Bruhwiler 1992). However, to make sure our simulation results were not

significantly different when using periodic boundaries, we ran two simulations, BstrPer and CdiffPer, with periodic

boundary conditions but the same initial conditions as Bstr and Cdiff, respectively. The flux tube dynamics of those

simulations are shown in Figure 11. Simulations Cdiff and CdiffPer show very similar results. For simulations

Bstr and BstrPer, the difference is larger: the periodic boundary conditions tie down the magnetic flux tube at the

boundaries, making it more difficult for the tube to rise after 100 Myr. Overall, the trends are the same, but the timing

is delayed when using periodic boundaries.

We also examined the effect of dimensionality on our simulations. Initial 2D simulations differed from our results

in 3D simulations significantly, with tubes taking much longer to rise in 2D simulations. This delay is caused by

flux tubes above our injection being unable to move out of the way of the rising flux tube where the injection took

place. This effect is also apparent in Figure 12, where we examine different resolutions and numerical sizes in the

third dimension, ŷ. For 8 cells in the ŷ direction and resolution ∆y = 62.5 pc, the tube slowly rises before bursting

upward. This trend is similar to our 2D simulations, whose initial rise takes longer. In these simulations, the rise only

happens quickly because we used a large injection energy Einj ≈ 1051 erg similar to simulation Ublast. For 16 cells

and a resolution ∆y = 31.25 pc, we see a smooth well-behaved flux tube rise. By increasing the width of the box to

32 and 64 numerical cells with the same resolution as the 16 cell run, we get clear convergence of results. From these

simulations, we chose a width of ±0.5 kpc and resolution of ∆y = 20 pc, resulting in 50 numerical cells.

C. SIMULATION CONVERGENCE

To mitigate the significance of purely numerical parameters we performed several convergence tests. We used 2D

simulations to narrow our choice of time integrator, Courant-Friedrich-Lewy (CFL) number, resolution, and the reduced

speed of light constant Vm (see Equation 20). Using 2D simulations allowed us to save computational resources while

exploring the convergence of these simulations. We illustrated in Section B that 2D simulations would be less accurate

because they limit the movement of magnetic flux tubes, but most of the fast, dynamic flow is still in the xz-plane.

For numerical parameters, the motion in that plane is where we need be concerned. All the convergence tests here

used a weak injection of 1050 erg with other parameters equal to those of simulation U. With the weaker injection and

2D restricted motion, the flux tube begins to rise buoyantly by 200 Myr.
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Figure 13. Convergence of key numerical parameters. Top row, first plot: Average cell-by-cell numerical error between
CFL = 0.2 and CFL = 0.1. Top row, second plot: Average cell-by-cell numerical error between CFL = 0.15 and CFL = 0.1. Top
row, third plot: Average cell-by-cell numerical error between a run with a third order Runge-Kutta time integrator and a run
with a fourth order Runge-Kutta time integrator. Middle row: Average cell-by-cell numerical error between runs with varying
Vm. Each has error measured with respect to a Vm = c simulation. Bottom row: Plot of vertical momentum pz in simulations
with different resolutions dx = dz.
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The time integrator choice of 3rd order Runge-Kutta and CFL number (0.2) were well converged, as the average

cell-by-cell error is under 10% in the top row of Figure 13. The error associated with the modified speed of light is

larger: in the middle row, the cell-by-cell error for various values of Vm are shown, each compared to a simulation

with Vm = c. From these, we pick Vm = 0.3c because there is not a huge increase in accuracy by going to higher

values of Vm. Increasing Vm beyond 0.3c would decrease the timestep below 0.1 kyr, increasing computational resource

requirements without an equivalent increase in accuracy. Finally, in the bottom row of Figure 13, we show the vertical

momentum pz for simulations with varying resolution. Instead of comparing these simulations via interpolation of

the high resolution simulations, we focus on how similar the dynamics are between each simulation. Each simulation

had an aspect ration of 1, with resolution ∆x = ∆z. Any higher resolution than 15 pc appears to reproduce a similar

vertical momentum on the flux tube. Also, the structures are similar between resolutions 15.62 pc, 7.81 pc, and 3.91 pc.

From these, we decided to run our perfomance simulations with a resolution ∆x = ∆z = 10 pc.
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